\qquad

Problem Solving: Draw a Picture and Write an Equation

A jeweler has a strand of gold wire that is $1 \frac{3}{8}$ inches. He cuts $\frac{3}{4}$ of an inch of wire to make a loop. How long is the remaining piece of wire?

Read and Understand

What do you know?

What are you trying to find?

Plan and Solve

Draw a picture for what you know.

Write an equation.
Let $x=$ the length of wire left over.
Solve the problem.
Write the answer in a sentence.
Look Back and Check
Is your answer correct?

The length of the wire is $1 \frac{3}{8}$ inches.
The length he cuts off is $\frac{3}{4}$ of an inch.
The length of the wire that is left over.

$$
\begin{aligned}
& \longleftarrow 1 \frac{3}{8} \text { in } . \longrightarrow \\
& \leftarrow \frac{3}{4} \text { in } \rightarrow
\end{aligned}
$$

$1 \frac{3}{8}-\frac{3}{4}=x$
$1 \frac{3}{8}-\frac{6}{8}=\frac{11}{8}-\frac{6}{8}=\frac{5}{8}$
The remaining wire is $\frac{5}{8}$ inch long.

Yes, $\frac{3}{4}+\frac{5}{8}=\frac{6}{8}+\frac{5}{8}=\frac{11}{8}=1 \frac{3}{8}$

From his house, Jason rode his bike $1 \frac{1}{3}$ miles to the post office.
He then rode in the same direction to the park, which is $\frac{1}{4}$ of a mile from the post office. How far did Jason ride?

1. To the right, draw a picture to represent the problem to be solved. Let $x=$ the distance Jason rode from his house to the park.
2. Write an equation that represents this distance. Then solve for x.

Problem Solving: Draw a Picture and Write an Equation

Draw a picture and write an equation. Then solve.

1. Mr. Flanders drives $1 \frac{2}{3}$ miles to school and $1 \frac{2}{3}$ miles home each day. He also drives an extra $2 \frac{2}{7}$ miles to go to the gym. How many miles does he drive in one day?
\qquad
\qquad
2. Stewart draws a triangle, and each side is $2 \frac{1}{6}$ inches long. Judith draws a square, and each side is $1 \frac{5}{8}$ inches long. Which figure has the greater perimeter, the triangle or the square?
\qquad
\qquad
3. Cristoff practices playing his guitar for $1 \frac{1}{2}$ hours each weekday. He practices this amount of time plus an additional $1 \frac{1}{2}$ hours on Sundays. Let $x=$ the number of hours Cristoff practices on Sundays. Draw a picture and write an equation and solve to find the number of hours he practices on Sundays.
4. Which of these fractions, when added to $2 \frac{1}{3}$, will give you a sum greater than six?
A $3 \frac{1}{2}$
B $3 \frac{5}{12}$
C $3 \frac{7}{12}$
D $3 \frac{3}{4}$
5. Dennis says that $1 \frac{1}{2}, 1 \frac{2}{4}$, and $1 \frac{3}{6}$ are all equivalent. Is he correct? Draw a picture and explain your answer.
