Name

Finding Common Denominators

How to find a common denominator.

Find a common denominator for $\frac{4}{10}$ and $\frac{3}{8}$.

List multiples of the denominators 10 and 8.Then look for a common multiple.

10: 10, 20, 30, 40 **8:** 8, 16, 24, 32, 40

The number 40 can be used as the common denominator.

How to rename fractions to have the same denominator.

Rename $\frac{4}{10}$ and $\frac{3}{8}$ using 40 as the common denominator.

Multiply the numerator and denominator by the same nonzero numbers.

The renamed fractions are $\frac{16}{40}$ and $\frac{15}{40}$.

In **1** through **8**, find a common denominator for each pair of fractions.

1. $\frac{2}{7}a$	and $\frac{1}{2}$ 2.	$\frac{4}{5}$ and $\frac{2}{3}$	3.	$\frac{3}{4}$ and $\frac{5}{6}$	4.	$\frac{7}{8}$ and $\frac{3}{10}$
5. $\frac{3}{4}$ a	and $\frac{5}{16}$ 6.	$\frac{1}{2}$ and $\frac{1}{2}$	7.	$\frac{2}{3}$ and $\frac{1}{8}$	8.	$\frac{7}{20}$ and $\frac{4}{15}$

In **9** through **16**, find a common denominator for each pair of fractions. Then rename each fraction in the pair.

 9. $\frac{4}{10}$ and $\frac{1}{5}$ 10. $\frac{4}{9}$ and $\frac{4}{6}$ 11. $\frac{1}{2}$ and $\frac{1}{7}$ 12. $\frac{2}{3}$ and $\frac{3}{18}$

 13. $\frac{4}{16}$ and $\frac{2}{3}$ 14. $\frac{1}{6}$ and $\frac{1}{4}$ 15. $\frac{2}{20}$ and $\frac{1}{8}$ 16. $\frac{7}{12}$ and $\frac{7}{15}$

Finding Common Denominators

In **1** through **8**, find a common denominator for each pair of fractions.

1. $\frac{2}{5}$ and $\frac{3}{4}$ **2.** $\frac{5}{8}$ and $\frac{4}{9}$ **3.** $\frac{1}{4}$ and $\frac{4}{7}$ **4.** $\frac{5}{12}$ and $\frac{7}{9}$ **5.** $\frac{7}{15}$ and $\frac{1}{3}$ **6.** $\frac{1}{2}$ and $\frac{2}{3}$ **7.** $\frac{2}{9}$ and $\frac{4}{5}$ **8.** $\frac{7}{8}$ and $\frac{5}{6}$

In **9** through **16**, find a common denominator for each pair of fractions. Then rename each fraction in the pair.

9. $\frac{3}{12}$ and $\frac{3}{8}$ **10.** $\frac{1}{8}$ and $\frac{2}{7}$ **11.** $\frac{1}{2}$ and $\frac{2}{9}$ **12.** $\frac{1}{3}$ and $\frac{1}{5}$

13. $\frac{7}{9}$ and $\frac{1}{6}$ **14.** $\frac{1}{6}$ and $\frac{3}{4}$ **15.** $\frac{7}{8}$ and $\frac{2}{3}$ **16.** $\frac{3}{8}$ and $\frac{5}{6}$

- 17. Train A arrives at Central Station on the hour and every 12 minutes. Train B arrives on the hour and every 15 minutes. When do both trains arrive at the same time?
 - A On the hour and 30 minutes past the hour
 - **B** On the hour and 15 minutes to the hour
 - **C** On the hour and 27 minutes past the hour
 - **D** On the hour only

- **18.** And rew wants to rename $\frac{2}{7}$ and $\frac{3}{4}$ using a common denominator. Which of the following shows these fractions renamed correctly?
 - **A** $\frac{8}{28}$ and $\frac{21}{28}$ **B** $\frac{2}{28}$ and $\frac{3}{28}$ **C** $\frac{4}{28}$ and $\frac{6}{28}$ **D** $\frac{2}{7}$ and $\frac{3}{7}$
- **19.** Manuel says that you can use one of the denominators of $\frac{5}{6}$ and $\frac{11}{30}$ when renaming these fractions using a common denominator. Why is this true?